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An Adjustable Cluasi-OPtical BandPass Filter—Part I: Theory

and Design Formulas

ADEL A. M. SALEH, MEMBER, IEEE

Absfract—A quasi-optical bsndpass filter suitable for millimeter

and submilliieter wavelengths and in the far infrared region is

described. It consists of three or more wire-grid polarizers with

quarter-wave spacings. The filter has the advantage over conven-

tional quasi-optical filters, e.g., Fabry-Perot filters, that its band-

width and the shape of its frequency response are adjustable. This

is achieved by changing the angular orientations of the wires of the

different polarizers. The filter requires the input electric field to be

linearly polarized in a direction perpendicular to the wires of the

first grid. The theory of operation is presented and design formulas

for the filter are given, under the assumption that ideal wire-grid

polarizers are employed. The effects of using realistic grids on the

performance of the filter are dealt within another paper.

I. INTRODUCTION

A T MILLIMETER and submillimeter wavelengths

and in the far infrared region, low loss and high power

handling capability are obtained by performing filtering

operations in a quasi-optical form rather than inside a

waveguide. The simplest and most commonly used type of

quasi-optical filter is a Fabry–Perot resonator employing

two or more metallic wire grids [1]–[9]. In such a filter

there is no simple provisions for adjusting the bandwidth

or the shape of the frequency response. Thus, to obtain

some desired response, grids with precise dimensions have

to be employed. This makes it difficult to build such filters.

An adjustable quasi-optical bandpass filter which

eliminates the above problem is described in this paper. It

consists of three or more wire-grid polarizers whose planes

are parallel and are spaced at quarter-wave intervals. The

bandwidth and shape of the frequency response of the

filter can be adjusted without affecting the center fre-

quency by changing the angular orientations of the wires

of the different polarizers. The principle of operation of

this filter bears some resemblance to that of DeLoach’s

step-twist-junction waveguide filter [10], [11].
A four-grid filter is shown in Fig. 1 together with a

simplified representation which will be employed through-

out the paper. In this figure, x=,Xb, ” c” are in the dh’ections

of the wires of grids a,b, o.., respectively. The 0’s are the

angles between wires of adjacent grids and the 4’s are the

electrical lengths of the spacings between them (4 =

2m/k, where s is the spacing and h the operating wave-
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Fig. 1. A four-grid filter and its simplified representation.

length). Note that the incident wave is linearly polarized

in a direction perpendicular to the wires of the first grid and

the transmitted wave is linearly polarized in a direction

perpendicular to the wires of the last grid.

The grids will be assumed to be ideal polarizers. That is

to say, a wave incident on a grid will be totally reflected or

totally transmitted depending, respectively, on whether

the electric field vector is parallel or perpendicular to the

wires of the grid. This can only be achieved if the grids

consist of parallel wires of infinitesimal thickness and

spacing. The effects of using realistic grids with finite

dimensions are considered in a companion paper [12].

The filter discussed here may superficially appear to be

similar to the optical birefringent bandpass filters of the

Lyot and the Sole types [13]. However, the operation of

these optical filters rests in fact on quite different princi-

ples. They employ anisotropic materials and absorption-

type polarizers. These polarizers absorb almost all the
power at frequencies outside the passband of the filter and

partially absorb the power at frequencies within the pass-

band. This makes such filters generally unsuitable for

usual communication applications.

II. THE BASIC SECTION OF THE FILTER

The response of a multigrid filter can be calculated

convenient y by dividing the filter into basic sections and

using matrix cascading formulas. The calculations are

greatly simplified by considering a basic section to consist

of two successive grids together with the space between

them. Even though the electric field between the two grids
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has two components of polarization, only one component

of polarization at each grid (namely, that perpendicular

to the wires of the grid) is transmitted. Thus the basic

section acts as a two-port network and 2 X 2 cascading

matrices can be used in the analysis. Thk is true only

because the grids are assumed to be ideal polarizers. If

this is not the case, more complicated analysis involving

4 X 4 matrices [12], [14] has to be employed.

To illustrate how a multigrid filter can be subdivided

into a number of basic sections, consider the four-grid

filter in Fig. 1. One can conceptually slice each of the

intermediate grids b and c into grids b’,b” and c’,c”,

respectively, as shown in Fig. 2. Each of the three sections

a — b’, b“ — c{, and c“ – d is a basic section as defined

above. In general an n-section filter has n + 1 grids.

A basic section is defined by the angle 0 between the

wires of the two grids forming the section and the electrical

length d of the spacing between them at a given frequency.

Let a wave with an electric field Ei perpendicular to the

wires of the first grid be at normal incidence on a basic

section as shown in Fig. 3. The wave will be unaffected

until it reaches the second grid. There, the component of

electric field perpendicular to the wires (E, cos O) will be

transmitted while that parallel to them (E, sin O) will be

reflected towards the first grid. The same kind of partial

transmission and reflection will take place at the first

grid, then at the second grid, and so on. The end result of

these successive reflections is that a wave with an electric

field E, perpendicular to the wires of the first grid, i.e.,

parallel to Ei, will be reflected by the two-grid structure,

and a wave with an electric field Et perpendicular to the

wires of the second grid will be transmitted through it. By

adding the fields of the successive passes and summing the

resulting infinite series, one obtains the overall field trans-

mission coefficient tand reflection coefficient r for the basic

section as

t= E,/E, = j2 sin@ cos O/[exp( j2@) – COSZ 8] (1)

(2)r = E,/Ei = – sin2 0/[exp ( j24) – COSZ6].

These equations can also be deduced from the work of

Groves [15].

From (1) and (2) one observes the following.

1) Changing the sign of /3 does not affect .?or r. 2) The

peak value of I tIas a function of frequency is obtained

when I#Jis an odd multiple of 7r/2, i.e., when the spacing

between the grids is an odd multiple of A/4. 3) This peak

value of I tInever reaches unity except in the trivial case

when 0 = O. Thus a basic section by itself is not suitable

as a bandpass filter. 4) When @ is a multiple of m, i.e.,

when the spacing between the grids is a multiple of k/2,

GRID B GRID C

l+,+o++,+o++, +
FIRST SECOND THIRD

SECTION SECTION SECTION

Fig. 2. Subdividing the four-grid filter of Fig. 1 into three basic
sections.

l---+----!
Fig. 3. Basic section of the filter.

The chain or ABCD matrix parameters of a basic section

can be shown from (1) and (2) to be

A = D = COS q$/COS e (3a)

B = j sin 4/cos 0 (3b)

C =j(cos20 – cos’ @)/(sin # cos 0). (3C)

The field transmission coefficient t.of a cascade of n

sections is obtained by multiplying together the chain

matrices of all the sections to obtain the overall chain

matrix parameters A~, B., C., and D., and using the

formula

t.= 2/(An+Bn+c. +D.). (4)

III. THE IDEAL TWO-SECTION FILTER

While one basic section by itself does not give 100-

percent transmission at any frequency, a cascade of two or

more sections can be designed to give 100-percent trans-

mission at any desired frequency. Here we discuss the tvvo-

section (i.e., three-grid) filter. Filters with more than two

sections are discussed later.

It can be shown from (3) and (4) that a two-section

filter can give 100-percent transmission at any desired

frequency if both the sections are identical. Two possible

realizations of such a symmetric filter are shown in Fig.

4(a) and (b). They correspond, respectively, to the cases

where 01 = 92 = 8 and 01 = —02 = 0. These two realiza-

tions have the same response because the characteristics

of the basic section do not depend on the sign of e. The

transmission coefficient of either filter is found from (3)

and (4) to be

sin ~ COS2 O

“ = (2cos’4$ – COS20) sin+ +~(1 – 2cos2@ + COS20) COS+
(5a)

one obtains I t I = O and I r I = 1. Thus the basic section which gives
can be used as a band-reject filter. This fact was recently

observed by Hill and Cornbleet [14]. It, 12= [1 + tan’0cot24]-1. (5b)
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Fig. 4. Two realizations of a symmetric twosection filter.

The subscript 2 in t2.refers to the number of sections.

Itis clear from (5) that, foranyvalueof O, 100-percent

transmission is obtained at @ = (2m – 1) 7r/2, i.e., when

the distance between adjacent grids is (2m – 1)x/4,

where m is a positive integer. Thus transmission resonances

occur at f~ = (2m — 1) fo;fobeing the frequency at which

4 = Ir/2. If B is defined as the 3-dB bandwidth at the mth
resonance, (.5b) gives the 3-dB relative bandwidth:

Wn = B/fm = 4‘an-l (cOt20)
(2m – 1)7T ‘

m = 1,2,. .-. (6)

Thus the closer 0 is to 90°, the narrower is the bandwidth

of the filter. A family of curves for I tz12,in decibels, as a

function of the normalized frequency f/f. is shown in

Fig. 5 for the first resonance (m = 1).

Since the variation of the angle o changes the bandwidth

but leaves the center frequency unchanged, the filter can

be called “an adjustable bandwidth filter.” The realization

of the filter shown in Fig. 4(b) is to be preferred to that

in Fig. 4(a) for two reasons. 1) The bandwidth adjustment

is achieved by rotating the middle grid alone. 2) The input

and output polarizations remain parallel.

The realization shown in Fig. 4(a) is useful as a polari-

zation rotator at frequencies near fo. This has previously

been investigated by Burtner [16], Chu [17], and Hill

and Cornbleet [14].

f/f~

Fig. 5. Frequency response of a two-section filter.

It is worth noting that 61 = *G is a necessary and

sufficient condition for obtaining 100-percent transmission

through a two-section filter at any given frequency. The

equality of 41 and dn, however, is not necessary for that

purpose. If@ = (01 + dn) /2, then just as in the symmetric

case, I tzI= 1 at @ = (2m — 1) 7r/2. In addition, if

41 # 42, then I t2 ] = 1 at @ = m~. However, if 41 =

4J2 = 4, then I t2 I = O at @ = mr as can be deduced from
(5). Hence, the existence of the null in I tzI at 4 = mr de-

pends critically on the equality of +1 and +.2.Thus if such a

structure is to be used as a band-reject filter as was sug-

gested by Hill and Cornbleet [14], then a Klgh degree of

tolerance has to be maintained in spacing the grids. This

is not the case when the structure is used as a bandpass

filter.

IV. IDEAL MULTISECTION FILTERS

The two-section filter is essential y a single-pole filter.

To obtain a frequency response with a sharper edge,

multisection filters are required.

Using (3) and (4), it can be shown that the transmis-

sion coefficient of a cascade of n identical sections (n + 1

grids) is given, for n >1, by

‘n= {’[%1+ ’2%:::n’ufi-1[%1}-1

(7a)

which gives

[( sin2 0 2 –1

Itnp= 1+
[ 1)}

Cos @

2 sin@ cos 0
u.., — (7b)

Cos o “

In the above equations, T. and U. denote Chebyshev

polynomials of the first and second kind, respectively.

They are defined by

!f’n(cos *) = Cos (n*) (8)

(9)

A careful examination of (7b) leads to the following

observations. 1) Just as in the case of a two-section filter,

the bandwidth of a multisection filter decreases as 8

increases towards 90°; however, at the same time, the

level of the ripples in the passband increases considerably.

2) For n >5, the filter does not have an equal-ripple
(ER) response (for n = 3 or 4, an ER response is obtained

by virtue of symmetry).
The above observations indicate that a cascade of more

than two identical sections is general] y not suitable as a

bandpass filter. However, as will be shown below, bandpass

filters with any desired characteristic, e.g., with maximally

flat (MF) or ER response, can be built provided that non-

identical sections are employed.

To obtain a frequency response which is symmetric

with respect to the center frequency, we will restrict our-

selves to the case where the electric lengths (the +’s)

of all the sections are identical. Furthermore, in order that
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the transmission coefficient reaches unity at least once

i
-0, y2

within the passband, we restrict ourselves to electrically
‘!1 =&/;#/!/%!symmetric multisection filters (this isasufficient but not a

necessary condition for this purpose). Thus for an n-section

filter with n = 2,3,4) .5,..., the angles between the wires of

the successive sections will be respectively, hh, 6wM1,
‘!!1 =g)#j@&J?618Z6431,&&.t&&&, . “ . , etc. In general there are [(n + 1)/2] _

different 0’s in a symmetric n-section filter (the square

brackets indicate “the integer part of”). As before, the
4

sign of each of the 19’s is arbitrary. Several symmetric
“~-=g]{{{{:+~~]{($p%””’multisection filters are shown in Fig. 6. It is noted that for

even values of n, the input and output polarizations can be

made parallel. Thk is not the case in general for odd
= ‘y

‘[’lF.@>:J#/f~<8)////@/’= n=6values of n.

Using (3) and (4), one obtains, after some algebraic ~

manipulations, the power transmission coefficient for a
, . .

Fig. 6. Symmetric multisection filters.
symmetric n-section filter as

Itnp=
sin2 d

(lo) TABLE I
VALUES OF ~n(~, 6) FOR (10)

sin2 d + [2”–2 sinz 61F. (O, 0) /i cos 0~]2
k=l

n Fn($,&)

where 0 = {OI,OZ,.. . ,0[(.+1),21}, % = On+P..k for lC >
[(n+ 1)/2], and Fn(@,o) is given in Table I fern = 1 to 6.

The design of MF and ER filters based on the result

given in (10) is discussed in the next two sections.

V. DESIGN OF MF AND ER FILTERS

Consider a symmetric multisection filter. Let fO be the

frequency at which + = ~/2, i.e., the spacing between

adjacent grids s = Xo/4. Transmission resonances occur at

.f~ = (2m – 1).fo, m = 1,2, ”-.. For a filter with bandwidth
B operating at the mth resonance, the relative bandwidth

is given by

w. = B/f. = w/(2m – 1) (ha)

where

w == B/fo. (llb)

The design procedure will be based on w rather than on Wm.

Of course, w = w~ if one is operating at the first resonance

(m = 1).

To design an MF or ER filter, besides w, one needs to

know the maximum attenuation allowed in the passband;

let this quantity be a decibels. This corresponds to a

minimum power transmission coeilicient r related to a by

a = — 10 loglo 7. (12)

Let us now define

p = [T/(1 – 7-)]1/’. ( 14)

A look at (10) reveals that the manner by which the

quantity F. (o, f)) /sin@ varies with O, i.e., with frequent y,

indicates the type of response of the filter. The function

F. (~, O) is shown from Table I to be a polynomial in cos O.

11 1

2 I Cos !$

3 I 03s20-(c2-c~)/(4 sfn2@l)

4

I
cos $J[COS2$-( 2C2-ClC2-Cf)/(4 sinzel)l

I

COS4C$ + p COS*$ + q

5

I

20~ s [cr(cl+C2+C3 )-2c2-c31/(4 sin 1)

I q = (c~-c~C3)/(16 sin2’dl)

cos .$[c0s4$+r c0s2++s]

6 r = [cl(cl+c2+2c 3)-2c2-2c3]/(4 sin2’Jl)

~ = EC2(C2+2C3-ClC3 )-2 C3C~Il(M Sln2e1J

Note: ck = COS’ ilk throughout the table.

of the coefficient of the highest power of cos + are set to

zero, the filter will have an MF response. On the other

hand, if these coefficients are chosen such that F.(o, O)/sin 4

has equal ripples the filter will have an ER response. With

this in mind, the values of the 0’s for symmetric multisec-

tion filters can be calculated to obtain MF or ER response

with given values of A and p. The results are given below

for two-, three-, and four-section filters.

Two-i3’ection Filter:

cotz 01 = p tan A. (15)

MF Three-Section Filter:

z = [p sinz (A/2) cos A]l/2 (i6a)

If all the coefficients of this polynomial, with the exception cosz 01 = 2z[(z’ + 1)112 – x] (16b)
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Cos 02 = COS261.

ER Three-Section Filter:

x = {*[(1 +P2)112 — 1][1 — COSA]]112

COS201= 22[(2! + 1)1/2 — z]

Cos !92 = COS2elp/[(1 + p2)l/2 — 1].

MF Fowr-Section Filter:

x = 4p sin3 A/cos A

COS6!91— x Cos’1!91+ 3X COS201 — 2X = o

COS202 = COS401/(2 — COS201).

13R Fowr-Section Filter:

z = 2psin A(l – COSA)

y = 2(1 – COSA) (2+ COSA)

COS6 01 — (x + y) COS4 01

+(3z+y)cos2th– 2x=0

COS2& = x tan2 L%.
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(16c)

(17a)

(17b)

(17C)

(18a)

(18b)

(lSC)

(19a)

(19b)

(19C)

(19d)

The frequency responses of a two-section filter, a MF

four-section filter, and an ER four-section filter are showh

in Fig. 7 for comparison. Each of the filters has a maximum

passband attenuation a = 1 dB and a relative bandwidth

w = 0.05. The angles indicated in the figure were cal-

culated using the above equations and the responses were

plotted from (10).

For filters with more than four sections, an exact analysis

becomes quite involved. However, since the desired

relative bandwidth w is usually a small quantity, ap-

proximate solutions with w <<1 are useful. This is done

in the next section.

VI. APPROXIMATE DESIGN OF

NARROW-BAND FILTERS

With w<< 1, the equations for the O’S obtained in the

previous section can be approximated by simple expres-

sions. In fact, by noticing an analog between our n-section

filter and homogeneous (n – 1)-section stepped-im-

pedance quarter-wave transformers [18, ch. 6], the

approximate solutions can be extended to any value of n

greater than one. The analog is obtained by replacing
n, w, (7r/2) — 01, (T/2) — Ok, and a in our case, respec-

tively, by n – 1, w,, (2/Vi) ‘/2, 2/(V~) ‘/’, and LA, in

[18, ch. 6]. The results are given below in terms of w and p

which are defined in (11) – ( 14) and the quantities

a1=[sin(2(n:1))1 (20a)

k = 2,3,... ,[(n + 1)/2]. (20b)

o- _---L-------
------

-5 –

$?
z
0 4-SECTIONS MF

?3
~ -10 -
z
W
z
~

1-

-15 -

-20 1 1 1
0.9 a95 1.0 1.05 1.1

f /flJ

Fig. 7. Comparison of the frequency responses of a two-section
filter, an MF four-section filter, and an ER four-section filter
(a = 1 dB, W = 0.05).

MF n-Section Filters;

~ ~ pl/(n–l)

[1

1/2

OIE~– ‘walg
4

(21a)

(21b)

Oh * ~ – ~ wakg, k = 2,3,... ,[(n + 1)/2]. (21c)

ER n-Sectwn Filters:

h = sinh
[
~ sinh–1 (P)

1

= +[(1 + p’) 1/2+ py(”-1)

– +[(1 + pz) ‘/2 + p]-11(”-1) (22a)

[1

1/2

131z~– ‘walh
4

(22b)

I% = ~ – ~ w[l + a~2(al-z + hz) ]112,

lc =2,3,... ,[(n + 1)/2]. (22c)

From (20) -(22), one obtains for both MF and ER

filters

& R 90 — blw’i’ degrees (23a)

th = 90 – bkw degrees, k = 2,3,.0. ,[(n + 1)/2] (23b)

where the numerical values of the bk are given in Table II

for various values of the maximum allowable passband

attenuation a, for n = 2–8 sections.

To demonstrate the accuracy’ of the above equations,

consider a four-section filter with maximum passband

attenuation a = 1.0 dB and a relative bandwidth at the

first resonance w = 0.05. For an MF response, (23) gives

01= 72.03° and 82= 86.01°, while the exact analysis of

(18) gives 01 = 72.18° and & = 86.11°. For an ER
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TABLE II
VALW~S OF bk FOR (23)

3

—

4

—

5

—

6

L

7

—

a

—

Maximum Passband Attenuation dJ3

w

E k 0.01 0.02 0.05 0.10 0.20 0.50 1.00 2.00 3.01
E’!

- 1 ?31.7 194.8 154.8 130.0 109.0 K5.9 71.2 58.1 Sn. u

~F 1 1?9.0 11s.3 105.4 96.6 88.5 7~.5 71.5 ‘5~.6 ~o”4
2 290.4 244.2 194.0 162.9 136.6 107.7 89.9 72. u 63.6

*R 1 107.2 97.8 86.3 7U.9 70.5 60.6 53.2 45.5 40.7

2 210.4 17u.6 144.7 12A.3 107.6 90.4 go. 6 73.2 69.9

~* 1 119.1 112. A !04. ! 98.2 92.6 85.6 80.4 75. I 71. R

2 175.1 156.0 133.8 119.1 105.9 90.4 79.7 69.6 .63.6

ER ;
90.5 84.4 76.6 70.7 64.8 56.8 50.5 43.6 39. ?

115.2 103. R 91.0 82.7 75.7 6R. O 63. S 59.9 5$.3

1 120.0 114.9 108.5 103. s 99.3 93.6 -9.3 X4.9 82.1
MF 2 161.7 148.2 13?.1 !?1.1 110.9 98.4 ~9.6 Rt7. q 75.7

3 lo~.! 95.4 85-O 77.9 71.4 63.6 57.7 5~.1 4~.7

1 85.1 80.0 73.3 68. P 69.9 55.6 &?.6 43.0 3s.7
ER 2 9?.3 89.7 80.7 74.8 69.6 63. P 60.9 57.4 56. I

3 71.5 67. ? 6?.3 59. ? 56.5 53.6 51.8 50.5 49.9

1 123.7 119.5 114.2 110.2 106.4 101.5 97.7 93.8 91.3
MF 2 165.2 I 54.1 !40.6 131.1 1?9.2 11!.1 103.0 95.0 90.0

3 91.8 R5.7 78.1 72.9 67.9 61.7 57.3 52.6 50.0

82.6 78.0 71.9 67.1 62.0 5s.0 49.1 42.7 3K.4
ER ; 90.6 84.3 76.8 71. 8 67.3 6!2. 1 59.0 56.4 55.3

3 62.7 60.0 56.8 54. 7 5$!.9 5!-).9 49.7 4U. R 4R. 4

1 128.5 124.9 120.2 116. 1 113. A 109. I3 105.6 102.1 99.8

MF : 174.5 16A.7 152.5 143. 9 135.7 !25.3 117.7 110.0 105.2
90.3 85.2 79.0 74. 5 70.9 64.9 60.9 56.9 54.5

4 77.3 72.9 67.6 63. 7 60.1 55.5 5P. 1 47.7 46.6

1 81.2 76.9 71. ! 66.4 61.6 5A. 7 48.9 .42.5 3U.3

ER ; 87.3 ??1.7 74.9 70.3 66.1 61.3 58. d 56.0 5A. I?
59.4 57.’2 S4. 6 53.0 51.5 49.9 4?.9 4R. ? 47. !7

4 55.9, 54.2 5P.2 51.0 49. x 47.6 A7.9 47. ‘1 b7. 1

1 133.7 130.4 126.2 123. I 1?0. 1 116.0 113.0 109.7 107.6
MF : 186.4 177.4 166.1 15s.0 150.3 1~~~~ 133.1 1~5.5 f~~.u

92.6 88.2 82.6 7R.5 7/3.7 69.8 66. t 62.4 60.0
4 73.2 69.6 65.2 62a0 59.0 55.1 52.’7 49.3 47.4

, t
1 80.4 76.3 70.6 66.1 6!.3 54.5 48.8 42.4 , 3s.!?

ER ; 85.4 80.2 73.8 69.4 65.4 60”9 58.0 55.7 54.6
57.7 55.8 53.6 52. I 50.8 .49.4 48.5 A7.9 67.5

4 53.3 52.0 50.5 49.6 ‘48.7 .47. R 47.2 46. !3 A6.6

response, (23) gives 64E78.71” and @zm86.83°, while

the exact analysis of (19) gives 01 = 78.75° and 13z=

86.86°. The accuracy of (23) holds reasonably well even

for w as high as 0.2.

The number of sections needed for some application is

determined from the required steepness of the frequency-

response curve beyond the edge of the passband. Let the

normalized frequency be defined as

8 = 2(.f-.fo)/jo (24)

where .fO is the center frequency at the first resonance.

It can be shown that in the vicinity of the passband, i.e.,

6<<1, and for w <<1, (10) is approximated by

It. \’= {1 + [p-’ (8/w) ”-’]2]-’ (25)

for MF filters, and

It. 1’= {1 + [p-lT._,(l$/w) ]’]-’ (26)

for ER filters, where T. is the Chebyshev pol ynomial of the
first kind defined in (8). The above equations show that an

n-section filter has n — 1 poles. The equations are identical

to those of standard MF and ER filters which are found in

many filter textbooks such as [18, sec. 4.03] (in this

reference, 6/w is replaced by W’/W1’). Given the type of

filter, i.e., MF or ER, the number of sections and the

allowable passband attenuation, one can use (25) or (26)

to calculate 8/w for any attenuation level beyond the pass-

band edge. The results are plotted in [18] and will not be

repeated here. As an example, [18, fig. 4.03-8] shows that

the response of a three-pole (four-section) ER filter with

l-dB passband ripples has a 25-dB bandwidth which is

2.18 times greater than the filter’s nominal bandwidth;

this number becomes 1.19 for the corresponding seven-pole

(eight-section) filter.

VII. CONCLUSIONS

The quasi-optical bandpass filter presented in this paper

has potential applications at millimeter and submillimeter

wavelengths and in the far infrared region. It has the ad-

vantage over conventional quasi-optical filters, e.g.,

those of the Fabry–Perot type, that its bandwidth and

shape of its frequency response curve are adjustable. The

filter requires the input wave to be linearly polarized. Thus

it is not suitable for use with incoming waves having

circular polarization or linear polarization of an unknown

direction.

This filter can be used in conjunction with waveguide

systems. This is particularly attractive if the powers in-

volved are so high that overheating or arcing would take

place in conventional waveguide filters. For this purpose,

one needs an efficient waveguide-to-beam launcher such as

a hybrid or a dual mode horn used in conjunction with a

lens or a parabolic reflector [19].

Throughout this paper, the wave was assumed to be at

normal incidence on the filter. It is possible to modify the

design formulas to include oblique incidence. Having the

wave at oblique incidence causes the reflected wave to be

separated from the incident wave which is necessary if the

filter is to be used as a diplexer. In this case, some loss

caused by the shifting of the beam as it bounces back and

forth between the grids needs to be taken into account.

This loss is similar to the walk-off loss occurring in con-

ventional Fabry–Perot diplexers [20].
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An Adjustable Quasi-Optical BandPass Filter—Part 11:

Practical Considerations

ADEL A. M. SALEH, MEMBER, IEEE

.4bsfnzcf-This paper investigates the effects of using realistic

grids on the performance of the adjustable quasi-optical bandpass

filter presented in Part I. The theory given here is in excellent

agreement with measurements performed on a three-grid filter in

the 50-75-GHz band.

I. INTRODUCTION

I N PART I of this paper [1], an adjustable quasi-optical

bandpass filter was described. The theory of operation

and the design formulas reported were developed under

the assumption that the wire-grid polarizers employed

were ideal. To be more specific, let the field reflection and

transmission coefficients for a plane wave at normal in-

cidence on a parallel-wire grid be denoted, respectively,

by rl I and tl I when the electric field is parallel to the wires,

and r~ and t~wheri it is perpendicular to the wires. In

Part I of this paper it was assumed that rl I = – 1, tl I = O,

rA = O, and t ~ = 1. This would require the wires of the

grids to have infinitesimal thickness and spacing. Thus
in practice, such values of the r’s and t’s can only be

achieved approximately. In this paper, the effects of using

realistic grids on the performance of the filter are investi-

gated.

11. WIRE-GRID POLARIZERS

In this section, the values of rl,, t,,, r~, and t~ are given

for two common types of grids. The grids will be assumed to

be lossless, i.e.,

Manuscript received November 19, 1973; revised February 25,
1974.

The author is with Bell Laboratories, Crawford Hill Laboratory,
Box 400, Hohndel, N. J. 07733.

and to have a thick

i.e.,

rl,lz+ltlllz=l

?“L12+qtL[2=l (1)

Less small

t[l = 1+?”]1

From (1) and (2), and from

compared to a wavelength,

tL=l+?”L. (2)

the fact that the grids are

inductive for the parallel polarization and capacitive for

the perpendicular polarization, the r’s and t’s can be

written as functions of two positive real parameters *1 I

and #~ in the forms

rll = –cos#ll exp (–j/Jll) (3)

t,, =jsin~llexp (–j~ll) (4)

r~ = –j sin #A exp ( –j*A) (5)

t. = cos +. exp ( –~$~) (6)

The grids of interest for the filter are those which act

as reasonably good polarizers, i.e., I rl I I , I t~/R 1 and

I tll I , I r~ I <<1. Thus the quality of a grid will be de-

scribed by the two coefficients I tl I I and I r~ I . The smaller

these coefficients are, the better is the grid. Clearly, since

I tl, I = sin ~1, and I r~ I = sin *L, the magnitude and

phase of any of the coefficients given in (3) – (6) can be

calculated from I tl I I and I r~ 1. It is emphasized that this

is only true since the grids are assumed to be Iossless and

thin in comparison to the wavelength.
Two common types of grids are shown in Fig. 1. The

first grid, Fig. 1 (a), consists of thin metallic strips of


