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An Adjustable Quasi-Optical Bandpass Filter—Part |: Theory

and Design Formulas

ADEL A. M. SALEH, MEMBER, IEEE

Abstract—A quasi-optical bandpass filter suitable for millimeter
and submillimeter wavelengths and in the far infrared region is
described. It consists of three or more wire-grid polarizers with
quarter-wave spacings. The filter has the advantage over conven-
tional quasi-optical filters, e.g., Fabry~Perot filters, that its band-
width and the shape of its frequency response are adjustable. This
is achieved by changing the angular orientations of the wires of the
different polarizers. The filter requires the input electric field to be
linearly polarized in a direction perpendicular to the wires of the
first grid. The theory of operation is presented and design formulas
for the filter are given, under the assumption that ideal wire-grid
polarizers are employed. The effects of using realistic grids on the
performance of the filter are dealt with in another paper.

I. INTRODUCTION

T MILLIMETER and submillimeter wavelengths
and in the far infrared region, low loss and high power
handling capability are obtained by performing filtering
operations in a quasi-optical form rather than inside a
waveguide. The simplest and most commonly used type of
quasi-optical filter is a Fabry—Perot resonator employing
two or more metallic wire grids [1]-[9]. In such a filter
there is no simple provisions for adjusting the bandwidth
or the shape of the frequency response. Thus, to obtain
some desired response, grids with precise dimensions have
to be employed. This makes it difficult to build such filters.
An adjustable quasi-optical bandpass filter which
eliminates the above problem is described in this paper. It
consists of three or more wire-grid polarizers whose planes
are parallel and are spaced at quarter-wave intervals. The
bandwidth and shape of the frequency response of the
filter can be adjusted without affecting the center fre-
quency by changing the angular orientations of the wires
of the different polarizers. The principle of operation of
this filter bears some resemblance to that of DeLoach’s
step-twist-junction waveguide filter [107], [117].

A four-grid filter is shown in Fig. 1 together with a
simplified representation which will be employed through~
out the paper. In this figure, z,,23,+ + « are in the directions
of the wires of grids a,b,- - -+, respectively. The 8’s are the
angles between wires of adjacent grids and the ¢’s are the
electrical lengths of the spacings between them (¢ =
2ws/\, where s is the spacing and \ the operating wave-
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Fig. 1. A four-grid filter and its simplified representation.

length). Note that the incident wave is linearly polarized
in a direction perpendicular to the wires of the first grid and
the transmitted wave is linearly polarized in a direction
perpendicular to the wires of the last grid.

The grids will be assumed to be ideal polarizers. That is
to say, a wave incident on a grid will be totally reflected or
totally transmitted depending, respectively, on whether
the electric field vector is parallel or perpendicular to the
wires of the grid. This can only be achieved if the grids
consist of parallel wires of infinitesimal thickness and
spacing. The effects of using realistic grids with finite
dimensions are considered in a companion paper [127].

The filter discussed here may superficially appear to be
similar to the optical birefringent bandpass filters of the
Lyot and the Sole types [13]. However, the operation of
these optical filters rests in fact on quite different princi-
ples. They employ anisotropic materials and absorption-
type polarizers. These polarizers absorb almost all the
power at frequencies outside the passband of the filter and
partially absorb the power at frequencies within the pass-
band. This makes such filters generally unsuitable for
usual communication applications.

II. THE BASIC SECTION OF THE FILTER

The response of a multigrid filter can be calculated
conveniently by dividing the filter into basic sections and
using matrix cascading formulas. The caleulations are
greatly simplified by considering a basic section to consist
of two successive grids together with the space between
them. Even though the electric field between the two grids



SALEH: BANDPASS FILTER—PART 1. THEORY AND DESIGN FORMULAS

has two components of polarization, only one component
of polarization at each grid (namely, that perpendicular
to the wires of the grid) is transmitted. Thus the basie
section acts as a two-port network and 2 X 2 cascading
matrices can be used in the analysis. This is true only
because the grids are assumed to be ideal polarizers. If
this is not the case, more complicated analysis involving
4 X 4 matrices [12], [14 ] has to be employed.

To illustrate how a multigrid filter can be subdivided
into a number of basic sections, consider the four-grid
filter in Fig. i. One can conceptually slice each of the
intermediate grids b and ¢ into grids b’,b"” and ¢',¢”,
respectively, as shown in Fig. 2. Each of the three sections
a— b, b" — ¢, and ¢ — d is a basic section as defined
above. In general an n-section filter has n + 1 grids.

A basic section is defined by the angle 6 between the
wires of the two grids forming the section and the electrical
length ¢ of the spacing between them at a given frequency.
Let a wave with an electric field E; perpendicular to the
wires of the first grid be at normal incidence on a basic
section as shown in Fig. 3. The wave will be unaffected
until it reaches the second grid. There, the component of
electric field perpendicular to the wires (E, cos 8) will be
transmitted while that parallel to them (F, sin 6) will be
reflected towards the first grid. The same kind of partial
transmission and reflection will take place at the first
grid, then at the second grid, and so on. The end result of
these successive reflections is that a wave with an electric
field E, perpendicular to the wires of the first grid, i.e.,
parallel to E;, will be reflected by the two-grid structure,
and a wave with an electric field E, perpendicular to the
wires of the second grid will be transmitted through it. By
adding the fields of the successive passes and summing the
resulting infinite series, one obtains the overall field trans-
mission coefficient { and reflection coefficient r for the basie
section as

t=FE/E, = j2sin ¢ cos 8/[exp(72¢) — cos?8] (1)
r=FE,/E;, = —sin?0/[exp (j2¢) — cos? 4] (2)

These equations can also be deduced from the work of
Groves [15].

From (1) and (2) one observes the following.
1) Changing the sign of 8 does not affect ¢ or r. 2) The
peak value of | {| as a function of frequency is obtained
when ¢-is an odd multiple of 7/2, i.e., when the spacing
between the grids is an odd multiple of A/4. 3) This peak
value of | ¢ | never reaches unity except in the trivial case
when 6 = 0. Thus a basic section by itself is not suitable
as a bandpass filter. 4) When ¢ is a multiple of =, ie.,
when the spacing between the grids is a multiple of A/2,

sin ¢ cos? ¢
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Fig. 3. Basic section of the filter.

The chain or A BCD maftrix parameters of a basic section
can be shown from (1) and (2) to be

A =D = cos ¢/cos § (3a)
B = jsin ¢/cos (3b)
C' = j(cos? @ — cos? ¢)/(sin ¢ cos ). (3¢)

The field transmission coefficient ¢, of a cascade of n
sections is obtained by multiplying together the chain
matrices of all the sections to obtain the overall chain
matrix parameters A, B, C, and D,, and using the
formula

III. THE IDEAL TWO-SECTION FILTER

While one basic section by itself does not give 100-
percent transmission at any frequency, a cascade of two or
more sections can be designed to give 100-percent trans-
mission at any desired frequency. Here we discuss the two-
section (i.e., three-grid) filter. Filters with more than two
sections are discussed later.

It can be shown from (3) and (4) that a two-section
filter can give 100-percent transmission at any desired
frequency if both the sections are identical. Two possible
realizations of such a symmetric filter are shown in Fig.
4(a) and (b). They correspond, respectively, to the cases
where 6, = 6, = 6 and 6, = —8, = 6. These two realiza-
tions have the same response because the characteristics
of the basic section do not depend on the sign of 8. The
transmission coefficient of either filter is found from (3)
and (4) to be

(4)

-
: (2 cos® ¢ — cos?f) sin ¢ + 7(1 — 2 cos? ¢ -+ cos? @) cos ¢

one obtains | | = 0 and | | = 1. Thus the basic section
can be used as a band-reject filter. This fact was recently
observed by Hill and Cornbleet [14].

(5a)

which gives

|t 2 = [1 + tan® 6 cot? 61 (5b)
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Fig. 4. Two realizations of a symmetric two-section filter.

The subseript 2 in {; refers to the number of sections.

It is clear from (5) that, for any value of 8, 100-percent
transmission is obtained at ¢ = (2m — 1)x/2, i.e., when
the distance between adjacent grids is (2m — 1)\/4,
where m is a positive integer. Thus transmission resonances
oceur at f, = (2m — 1)fy; fo being the frequency at which
¢ = 7/2. If B is defined as the 3-dB bandwidth at the mth
resonance, (5b) gives the 3-dB relative bandwidth:

4 tan™! (cot? 6)

Wn = Bffn=————,  mo=12-

2m — U= (6)

Thus the closer 8 is to 90°, the narrower is the bandwidth
of the filter. A family of curves for | ¢ [%, in decibels, as a
function of the normalized {requency f/f, is shown in
Fig. 5 for the first resonance (m = 1).

Since the variation of the angle 8 changes the bandwidth
but leaves the center frequency unchanged, the filter can
be called “an adjustable bandwidth filter.”’” The realization
of the filter shown in Fig. 4(b) is to be preferred to that
in Fig. 4(a) for two reasons. 1) The bandwidth adjustment
is achieved by rotating the middle grid alone. 2) The input
and output polarizations remain parallel.

The realization shown in Fig. 4(a) is useful as a polari-
zation rotator at frequencies near fo. This has previously
been investigated by Burtner [167], Chu [17], and Hill
and Cornbleet [14].
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Fig. 5. Frequency response of a two-section filter.
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It is worth noting that 6, = 36, is a necessary and
sufficient condition for obtaining 100-percent transmission
through a two-section filter at any given frequency. The
equality of ¢1 and ¢s, however, is not necessary for that
purpose. If ¢ = (¢1 + ¢2) /2, then just as in the symmetric
case, [h] =1 at ¢ = (2m — 1)x/2. In addition, if
¢ 7 ¢y, then || =1 at ¢ = mmx. However, if ¢ =
¢2 = ¢, then | £ | = 0 at $ = mx as can be deduced from
(5). Hence, the existence of the nullin [ ¢ | at ¢ = m=r de-
pends critically on the equality of ¢, and ¢.. Thus if such a
structure is to be used as a band-reject filter as was sug-
gested by Hill and Cornbleet [[147, then a high degree of
tolerance has to be maintained in spacing the grids. This
is not the case when the structure is used as a bandpass
filter.

IV. IDEAL MULTISECTION FILTERS

The two-section filter is essentially a single-pole filter.
To obtain a frequency response with a sharper edge,
multisection filters are required.

Using (3) and (4), it can be shown that the transmis-
sion coefficient of a cascade of n identical sections (n + 1
grids) is given, for n > 1, by

2 sin? ¢ — sin? 6 : -t
b - {T,, [cos ¢] ny sm. ¢ — sin Uy [cos ¢]}
cos 0 2s8in ¢ cos @ cos 8

which gives

(7a)

sin? 6 cos ¢ 2} -
{1 + (2 sin ¢ cos 6 U [cos 0]) - )

In the above equations, T, and U, denote Chebyshev
polynomials of the first and second kind, respectively.
They are defined by

L [P =

Tw(cos ¥) = cos (ny) (8)

sin [(n + 1)y .

sin Y

Un(cosy) = (9)

A careful examination of (7b) leads to the following
observations. 1) Just as in the case of a two-section filter,
the bandwidth of a multisection filter decreases as 8
increases towards 90°; however, at the same time, the
level of the ripples in the passband increases considerably.
2) For n > 5, the filter does not have an equal-ripple
(ER) response {forn = 3 or 4, an ER response is obtained
by virtue of symmetry).

The above observations indicate that a cascade of more
than two identical sections is generally not suitable as a
bandpass filter. However, as will be shown below, bandpass
filters with any desired characteristic, e.g., with maximally
flat (MT") or ER response, can be built provided that non-
identical sections are employed.

To obtain a frequency response which is symmetric
with respect to the center frequency, we will restrict our-
selves to the case where the electric lengths (the ¢'s)
of all the sections are identical. Furthermore, in order that
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the transmission coefficient reaches unity at least once
within the passband, we restrict ourselves to electrically
symmetric multisection filters (this is a sufficient but not a
necessary condition for this purpose). Thus for an n-section
filter with n = 2,3,4,5,- - -, the angles between the wires of
the successive sections will be respectively, 6.8y, 6:8:8y,
01020201, 9102039201,' v, ete. In general there are [(n -|— 1)/2]
different #’s in a symmetric n-section filter (the square
brackets indicate ‘‘the integer part of”’). As before, the
sign of each of the #’s is arbitrary. Several symmetric
multisection filters are shown in Fig. 6. It is noted that for
even values of n, the input and output polarizations can be
made parallel. This is not the case in general for odd
values of n.

Using {3) and (4), one obtains, after some algebraic
manipulations, the power transmission coefficient for a
symmetric n-section filter as

sin?
[t = ¢ (10)
sin? ¢ + [272 sin? 0,F,.(¢,8) /11 cos 6, 2
k=1
where 0 = {01,02,' . ',0[(n+1)/2] }, 0, = 6n+1—k for k >

[(n+1)/2], and F,.(¢,8) is given in TableI forn = 1 to 6.
The design of MF and ER filters based on the result
given in (10) is discussed in the next two sections.

V. DESIGN OF MF AND ER FILTERS

Consider a symmetric multisection filter. Let fo be the
frequency at which ¢ = x/2, ie., the spacing between
adjacent grids s = Ao/4. Transmission resonances oceur at
fm=02m — )fy,m -. For a filter with bandwidth
B operating at the mth resonance, the relative bandwidth
is given by

Wn = B/fn = w/(2m — 1) (11a)

where
w = B/f, (11b)

The design procedure will be based on w rather than on wy.
Of course, w = w. if one is operating at the first resonance
(m = 1).

To design an MF or ER filter, besides w, one needs to
know the maximum attenuation allowed in the passband;
let this quantity be « decibels. This corresponds to a
minimum power transmission coefficient r related to « by

a = —10 logy . (12)

Let us now define
A= qw/4 (13)
p=[r/(1~—n)]" (14)

A look at (10) reveals that the manner by which the
quantity F.(¢,0)/sin ¢ varies with ¢, i.e., with frequency,
indicates the type of response of the filter. The function
F.(,0) is shown from Table I to be a polynomial in cos ¢.
If all the coefficients of this polynomial, with the exception
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=22 =

TABLE 1
VALUES oF F,(¢, 0) For (10)
n F (9,9)
1 1
2 cos ¢
3 c0s?9~(C,=02) /(4 sin®e))
Y 2 2 2
cos ¢fcos ¢-(2CE—CICZ—Cl)/(U sin 61)]

cosucp + p cosz¢ + q

= [Cp(C1#C,+03)=2C,-C31/ (4 s1n8y)

wn
J
L

2 2 2
= (02—0103)/(16 5in%6;)

cos ¢[005u¢+r cosz¢+s ]

L=
]
[

2
= [cl(cl+cg+2c3)-2c2-2c3]/(u sin“6,)

2 2
s = [c,(c +2¢ -clc3)-ac3clj/(16 s1n%6;)

3
cos? 6 throughout the table.

Note: Cy, =

of the coefficient of the highest power of cos ¢, are set to
zero, the filter will have an MF response. On the other
hand, if these coefficients are chosen such that F,(¢,8) /sin ¢
has equal ripples the filter will have an ER response. With
this in mind, the values of the #’s for symmetric multisec-
tion filters can be calculated to obtain MF or ER response
with given values of A and p. The results are given below
for two-, three-, and four-section filters.

Two-Section Filter:

cot? 6, = p tan A, (15)

MF Three-Section Filler:
zr = [psin? (A/2) cos AT2 (16a)
cos? 0y = 2x[ (22 + 1)V2 — & (16b)
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cos 0 = cos? by (16¢)

ER Three-Section Filter:
= {31+ )" —1][1 —cos AJ}1?  (17a)
cos? 0y = 2a[ (a2 + 1)12 — 2] (17b)
c0s 0z = cos? fip/[ (1 + p2)¥2 — 17. (17¢)

MF Four-Section Filter:
r = 4psind® A/cos A (18a)
cost 0y — v costby + Bz cos?b — 2z =0 (18b)
cos? By = cost 61/ (2 — cos? 6y). (18¢)

ER Four-Section Filter:
z = 2psin A(1 — cos A) (19a)
¥y = 2(1 — cos A) (2 4+ cos A) (19b)

cos® O, — (x 4+ y) cost b,
+ Bz + y)costty — 22 =0 (19¢)
(19d)

cos? 6, = x tan? ;.

The frequency responses of a two-section filter, a MF
four-section filter, and an ER four-section filter are shown
in Fig. 7 for comparison. Each of the filters has a maximum
passband attenuation ¢« = 1 dB and a relative bandwidth
w = 0.05. The angles indicated in the figure were cal-
culated using the above equations and the responses were
plotted from (10).

For filters with more than four sections, an exact analysis
becomes quite involved. However, since the desired
relative bandwidth w is usually a small quantity, ap-
proximate solutions with w << 1 are useful. This is done
in the next section.

VI. APPROXIMATE DESIGN OF
NARROW-BAND FILTERS

With w <« 1, the equations for the #’s obtained in the
previous section can be approximated by simple expres-
sions. In fact, by noticing an analog between our n-section
filter and homogeneous (n — 1)-section stepped-im-
pedance quarter-wave transformers [18, ch. 6], the
approximate solutions can be extended to any value of n
greater than one. The analog is obtained by replacing
n, w, (w/2) — 6, (w/2) — 6, and « in our case, respec-
tively, by n — 1, w, (2/V)Y2, 2/(Vi)¥2, and Ly, in
[18, ch. 6]. The results are given below in terms of w and p
which are defined in (11)~(14) and the quantities

0= [sin <;2(n7r—_1))]- (20a)
. 2k — 1 ) 2k — 3 -z
o= [on (=) (G = 7))
k=23, ",[(')’L + 1)/2] (2Ob)
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Fig. 7. Comparison of the frequency responses of a two-section
filter, an MF four-section filter, and an ER four-section filter
(@ = 1dB, w = 0.05).

MF n-Section Filters:

g = pt (21a)
1/2
61 zg — [g walg] (21b)
m w
0,625 — L—Lwakg, k=23 [(n4+1)/2]. (21e)
ER n-Section Filters:
. 1
h = sinh [n 3 sinh™! (p)]
= [(1 + p®)V2 + pM=-D
— (1 + p2)V2 4 pJU =D (22a)
i 1/2
6, 2325 — E walh] (22b)
8, = g — zwtl - akz(al—z 4 hz) ]1/2,
E=23,--«,[(n+1)/2] (22¢)

From (20)-(22), one obtains for both MF and ER
filters

61 =~ 90 — byw'? degrees (23a)

0, >~ 90 — byw degrees, k = 2,3,-++,[(n 4+ 1)/2] (23b)

where the numerical values of the b, are given in Table IT
for various values of the maximum allowable passband
attenuation «, for n = 2-8 sections.

To demonstrate the accuracy of the above equations,
consider a four-section filter with maximum passband
attenuation « = 1.0 dB and a relative bandwidth at the
first resonance w = 0.05. For an MF response, (23) gives
6, ~72.03° and 6, ~ 86.01°, while the exact analysis of
(18) gives 6, = 72.18° and 6, = 86.11°. For an ER
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TABLE II
VaALUES oF by For (23)

Maximum Passband Attenuation 4B

Type

0.01 {0.02 {0.05 10.10 |0.20

n
1]

194.8 130.0[109.0

885
1366

118

.3 9646
244+ 2

16249

40+ 7
699

978
178+ 6

78.2
124.3

70.S

ER 107.6

926
105.9

T1.8
.63+ 6

11202
156.0

9B 2

MF 119.1

Rl o oR ]| e
o
~3
.
[

84,4 T6+6

ER 103.8

82.1
757
ag. 7

114.9
148.2
95.4

103.8
1211
179

99+3
110.9
714

80.0
89.7
672

682
T4.8
59.2

62.9
696
S6+5

387
S6.1
49.9

ER

119.5
154.1
8S5.7

110.2
1311
729

106« 4
192.2
6749

91.3
900
5040

MF

78+ 0
B4.3
600

671
T1.8
S4e¢7

62.0
673
52.9

384
5.2
4R« 4

ER

124.9
164.7
85.2
72.9

1167
143.9
T4.5
637

113.24

135.7
T0«2
601

99.8
105.2
54.5
4646

MF

7649
81.7
57.2
$54.2

664
703
53.0
S1.0

616
6641
51.5
49.8

38.3
S54e¢R
47«8
aTet

ER

130.4
1774
88.2
69.6

123.1
15R«0
78S
6240

12041
1503
T4+
59.0

1N7.6
1P0.R
6040
ATl

MF

SwR FFw e FWOH W wn - WK | wrPE N =
0
o
o

T6+3
RO.2
55.8
52.0

661
694
52.1
49+ 6

61.3
65. 4
50+8
48 7

, 3R.2
54+ 6
4765
4646

ER

EIULIVY
v
pe)
B
-~

response, (23) gives 6, ~ 78.71° and 6, ~ 86.83°, while
the exact analysis of (19) gives 6, = 78.75° and 6, =
86.86°. The accuracy of (23) holds reasonably well even
for w as high as 0.2.

The number of sections needed for some application is
determined from the required steepness of the frequency-
response curve beyond the edge of the passband. Let the
normalized frequency be defined as

8 =2(f = fo)/fo

where fy is the center frequency at the first resonance.
It can be shown that in the vicinity of the passband, i.e.,
8 K 1, and for w < 1, (10) is approximated by

(24)

[ tn 2 >~ {1 + [p72(8/w)1 P} (25)
for MF filters, and
[ tn P {1 4 Lo T (8/w) Y (26)

for ER filters, where T, is the Chebyshev polynomial of the
first kind defined in (8). The above equations show that an
n-section filter hasn — 1 poles. The equations are identical
to those of standard MF and ER filters which are found in
many filter textbooks such as [18, sec. 4.03] (in this
reference, 6/w is replaced by w'/w'). Given the type of
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filter, i.e., MT or ER, the number of sections and the
allowable passband attenuation, one can use (25) or (26)
to calculate 6/w for any attenuation level beyond the pass-
band edge. The results are plotted in [187] and will not be
repeated here, As an example, [18, fig. 4.03-87 shows that
the response of a three-pole (four-section) ER filter with
1-dB passband ripples has a 25-dB bandwidth which is
2.18 times greater than the filter’s nominal bandwidth;
this number becomes 1.19 for the corresponding seven-pole
(eight-section) filter.

VII. CONCLUSIONS

The quasi-optical bandpass filter presented in this paper
has potential applications at millimeter and submillimeter
wavelengths and in the far infrared region. It has the ad-
vantage over conventional quasi-optical filters, e.g.,-
those of the Fabry—Perot type, that its bandwidth and
shape of its frequency response curve are adjustable. The
filter requires the input wave to be linearly polarized. Thus
it is not suitable for use with incoming waves having
circular polarization or linear polarization of an unknown
direction.

This filter can be used in conjunction with waveguide
systems. This is particularly attractive if the powers in-
volved are so high that overheating or arcing would take
place in conventional waveguide filters. For this purpose,
one needs an efficient waveguide-to-beam launcher such as
a hybrid or a dual mode horn used in conjunction with a
Jens or a parabolic reflector [197].

Throughout this paper, the wave was assumed to be at
normal incidence on the filter. It is possible to modify the
design formulas to include oblique incidence. Having the
wave at oblique incidence causes the reflected wave to be
separated from the incident wave which is necessary if the
filter is to be used as a diplexer. In this case, some loss
caused by the shifting of the beam as it bounces back and
forth between the grids needs to be taken into account.
This loss is similar to the walk-off loss occurring in con-
ventional Fabry—Perot diplexers [20].
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An Adiustable Quasi-Optical Bandpass Filter—Part |I:

Practical Considerations

ADEL A. M. SALEH, MEMBER, IEEE

Abstract—This paper investigates the effects of using realistic
grids on the performance of the adjustable quasi-optical bandpass
filter presented in Part I. The theory given here is in éxcellent
agreement with measurements performed on a three-grid filter in
the 50-75-GHz band.

I. INTRODUCTION

N PART I of this paper [1], an adjustable quasi-optical

bandpass filter was deseribed. The theory of operation
and the design formulas reported were developed under
the assumption that the wire-grid polarizers employed
were ideal. To be more specific, let the field reflection and
transmission coefficients for a plane wave at normal in-
cidence on a parallel-wire grid be denoted, respectively,
by 7, and ¢;; when the electric field is parallel to the wires,
and 71 and {1 when 1t is perpendicular to the wires. In
Part I of this paper it was assumed that 7, = —1,¢;, = 0,
ri = 0, and {1 = 1. This would require the wires of the
grids to have infinitesimal thickness and spacing. Thus
in practice, such values of the 7’s and s can only be
achieved approximately. In this paper, the effects of using
realistic grids on thie performance of the filter are investi-
gated.

II. WIRE-GRID POLARIZERS

In this section, the values of 7y, ¢}, 71, and t. are given
for two common types of grids. The grids will be assumed to
be lossless, i.e.,
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and to have a thickness small compared to a wavelength,
ie.,

t[] = 1+7’H tr = 1+7"J.. (2)

From (1) and (2), and from the fact that the grids are
inductive for the parallel polarization and capacitive for
the perpendicular polarization, the »’s and #s can be
written as functions of two positive real parameters ¢
and ¢. in the forms

= —cos ¥y exp (—ipn) (3)
ty = Jsinyg exp (—jf) (4)
ri = —jsinyuexp (—jps) (5)
fe = cos du exp (—jfs). (6)

The grids of interest for the filter are those which act
as reasonably good polarizers, ie., [ 7|, |ta]|>~1 and
| 4], |7+ | << 1. Thus the quality of a grid will be de-
scribed by the two coefficients | ¢, | and | 7+ | . The smaller
these coefficients are, the better is the grid. Clearly, since
| £, ] =siny, and |ri| = siny., the magnitude and
phase of any of the coefficients given in (3)—(6) can be
calculated from | ¢ | and | r1|. It is emphasized that this
is only true since the grids are assumed to be lossless and
thin in comparison to the wavelength.

Two common types of grids are shown in Fig. 1. The
first grid, Fig. 1(a), consists of thin metallic strips of



